62 research outputs found

    Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression

    Get PDF
    Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy

    Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression

    Get PDF
    Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy

    Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1

    Get PDF
    Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1α) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease

    Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY phase II randomized trial

    Get PDF
    The HERBY trial was a phase II open-label, randomized, multicenter trial evaluating bevacizumab (BEV) in addition to temozolomide/radiotherapy in patients with newly diagnosed non-brainstem high-grade glioma (HGG) between the ages of 3 and 18 years. We carried out comprehensive molecular analysis integrated with pathology, radiology, and immune profiling. In post-hoc subgroup analysis, hypermutator tumors (mismatch repair deficiency and somatic POLE/POLD1 mutations) and those biologically resembling pleomorphic xanthoastrocytoma ([PXA]-like, driven by BRAF_V600E or NF1 mutation) had significantly more CD8+ tumor-infiltrating lymphocytes, and longer survival with the addition of BEV. Histone H3 subgroups (hemispheric G34R/V and midline K27M) had a worse outcome and were immune cold. Future clinical trials will need to take into account the diversity represented by the term ‘‘HGG’’ in the pediatric population

    Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma.

    Get PDF
    We collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification

    The Pediatric Cell Atlas:Defining the Growth Phase of Human Development at Single-Cell Resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan

    Computational Analyses, Methods, and Tools Supporting Cancer Biomarker Identification and Targeted Therapy Development

    No full text
    Over time, much has been done in attempt to understand the various causes and complex molecular mechanisms of cancer, yet it still represents one of the leading causes of mortality worldwide. Fortunately, cancer therapeutics have evolved, from broad chemotherapies with multiple harsh side effects to molecular missiles which target specific cancer causing genes, leaving a patient's normal cells largely untouched. Similarly, cancer detection strategies and prognosis methods have also advanced, allowing doctors and patients to better manage and control the disease. The main challenge currently is to identify those genes that are specific markers for a particular cancer and can inform prognosis and those that may be "targeted therapies". This can be accomplished most rapidly through the use of large-scale cancer genomic datasets and sophisticated integrative analyses, methods, and tools to detect and prioritize candidate genes and biomarkers. As such, the goal of this work is to develop analyses, methods, and frameworks that benefit the translational research community by identifying and prioritizing genes for biomarker and drug development. Specifically, using integrative approaches on The Cancer Genome Atlas (TCGA) and various datasets from Gene Expression Omnibus (GEO), we perform analyses to identify a marker of survival and Epithelial-mesenchymal transition (EMT) in ovarian serous adenocarcinoma and a 5-gene signature of survival and molecular subtype in pancreatic ductal adenocarcinoma. Additionally, we highlight associated oncogenic pathways and suggest potential therapeutic strategies in these analyses. In order to improve detection of these survival markers we also evaluate a suite of techniques used commonly in the literature for survival analysis and determine best practices when using RNA-Sequencing data. Finally, we develop an application that allows researcher to access cancer 'big data' and apply their experience and domain expertise alongside the application logic of the tool to identify survival markers, therapeutic avenues, and genes that may represent an 'Achilles heel' for a set of tumors. This undertaking involves many different facets of bioinformatics, including statistical methods of analysis, high-performance computing, graph theory, web programming, and UI/UX interaction, as well as domain expertise in cancer target discovery. While there is much activity in the translational cancer informatics domain, the current study adds to the wealth of knowledge and tools in the community and presents another foothold to gain novel insights into this devastating disease.Ph.D., Biomedical Science -- Drexel University, 201

    is a Marker for Poor Prognosis and a Potential Driver for Metastasis in Ovarian Carcinomas

    No full text
    Ovarian cancer (OC) is a leading cause of cancer mortality, but aside from a few well-studied mutations, very little is known about its underlying causes. As such, we performed survival analysis on ovarian copy number amplifications and gene expression datasets presented by The Cancer Genome Atlas in order to identify potential drivers and markers of aggressive OC. Additionally, two independent datasets from the Gene Expression Omnibus web platform were used to validate the identified markers. Based on our analysis, we identified FXYD5 , a glycoprotein known to reduce cell adhesion, as a potential driver of metastasis and a significant predictor of mortality in OC. As a marker of poor outcome, the protein has effective antibodies against it for use in tissue arrays. FXYD5 bridges together a wide variety of cancers, including ovarian, breast cancer stage II, thyroid, colorectal, pancreatic, and head and neck cancers for metastasis studies
    • …
    corecore